Unique in its clarity, examples, and range, Physical Mathematics explains simply and succinctly the mathematics that graduate students and professional physicists need to succeed in their courses and research. The book illustrates the mathematics with numerous physical examples drawn from contemporary research. This second edition has new chapters on vector calculus, special relativity and artificial intelligence and many new sections and examples. In addition to basic subjects such as linear algebra, Fourier analysis, complex variables, differential equations, Bessel functions, and spherical harmonics, the book explains topics such as the singular value decomposition, Lie algebras and group theory, tensors and general relativity, the central limit theorem and Kolmogorov's theorems, Monte Carlo methods of experimental and theoretical physics, Feynman's path integrals, and the standard model of cosmology.